ACME 台架 PRHR 管线破口试验自然循环 现象研究

刘宇生^{1,2} 谭思超¹ 靖剑平² 庄少欣² 李东阳¹ 王 楠³
 1(哈尔滨工程大学黑龙江省核动力装置性能与设备重点实验室 哈尔滨 150001)
 2(生态环境部核与辐射安全中心 北京 100086)
 3(国核华清(北京)核电技术研发中心有限公司 北京 102209)

摘要 为研究非能动核电厂在多重失效事故条件下的安全性能及新的热工水力现象,利用大型非能动堆芯冷却系统整体试验(Advanced Core-cooling Mechanism Experiment, ACME)台架开展了非能动余热排出(Passive Residual Heat Removal, PRHR)管线破口失水试验(Loss of Coolant Accident, LOCA)。通过重点分析PRHR换热器(Heat Exchanger, HX)流动换热功能失效对事故进程和热工水力现象的影响,获得了非能动堆芯冷却系统(Passive Core Cooling System, PXS)与反应堆冷却剂系统(Reactor Coolant System, RCS)、PXS系统内各安全设备间的相互影响规律及耦合效应。结果表明:PRHR管线LOCA中, PRHR HX 会出现反向流动换热的新现象; 堆芯-蒸汽发生器自然循环过程的平均载热功率提高约30%,对 RCS 降温降压具有重要作用,是事故初期的关键现象;事故瞬态下, PXS 非对称布置对 RCS 支路热工水力状态存在显著影响, PRHR 管线LOCA 中非对称布置效应会增强。

关键词 破口失水事故,ACME台架,整体效应试验,自然循环,非能动安全 中图分类号 TL333 DOI: 10.11889/j.0253-3219.2023.hjs.46.060601

Investigation on natural circulation phenomena of LOCA with PRHR pipeline break in ACME facility

LIU Yusheng^{1,2} TAN Sichao¹ JING Jianping² ZHUANG Shaoxin² LI Dongyang¹ WANG Nan³ 1(Heilongjiang Provincial Key Laboratory of Nuclear Power System & Equipment, Harbin Engineering University, Harbin 150001, China) 2(Nuclear and Radiation Safety Center, Beijing 100086, China)

3(State Nuclear Power Technology R&D Center Co., Ltd., Beijing 102209, China)

Abstract [Background] The passive residual heat removal (PRHR) system is an important innovative design of the advanced pressurized water reactor technology. Under accident conditions, PRHR system can transport decay heat in the form of natural circulation to ensure core cooling. However, the heat exchange function of PRHR system will be lost when the PRHR pipeline breaks. With development of the accident process, the coupling effect between different safety equipments of the passive core cooling system (PXS) will be affected. Besides, thermal hydraulic

国家科技重大专项(No.2019ZX06005001)资助

第一作者:刘宇生,男,1986年出生,2012年于哈尔滨工程大学获工学硕士学位,现为博士研究生,研究领域为反应堆热工水力试验、核 电厂安全分析

通信作者: 谭思超,E-mail: tansichao@hrbeu.edu.cn

收稿日期: 2022-09-06, 修回日期: 2022-12-21

Supported by Major National Science and Technology Program (No.2019ZX06005001)

First author: LIU Yusheng, male, born in 1986, graduated from Harbin Engineering University with a master's degree in 2012, doctoral student, focusing on reactor thermal hydraulic test and safety analysis of nuclear power plant

Corresponding author: TAN Sichao, E-mail: tansichao@hrbeu.edu.cn

Received date: 2022-09-06, revised date: 2022-12-21

state of the reactor coolant system (RCS) will also be affected via complex interaction mechanism. As a result, the new thermal hydraulic phenomena occur, and thus ultimately affecting the accident mitigation capacity of the PXS. [Purpose] This study aims to confirm the safety characteristics of PXS and identify the new thermal hydraulic phenomena of advanced passive nuclear power plant during accident with multiple failures. [Methods] A series of integral effect tests of loss of coolant accident (LOCA) were conducted on the advanced core-cooling mechanism experiment (ACME) facility. The influence of failure of PRHR HX flow and heat exchanging function on LOCA accident process were investigated on the basis of the test cases including PRHR pipeline break and cold leg (CL) break. The unique thermal hydraulic phenomena occurred during PRHR LOCA were explored, and their influence laws on the coupling effect among PXS safety equipments, and the influence laws on thermal hydraulic state of RCS were obtained. [Results] The results show that there is a momentary reverse flow and heat transfer process in PRHR HX at the beginning of PRHR LOCA compared with typical CL LOCA. Besides, the natural circulation process between the core and steam generators (SGs) plays a critical role in cooling and depressurization of RCS, and its corresponding time-averaged heat transfer power is increased by about 30%. Besides, the asymmetric arrangement of PXS leads to a significant difference of transient thermal hydraulic state between the RCS branches, namely the PRHR cools the coolant via one RCS loop while two core makeup tanks (CMTs) inject the cold water to the core via the other RCS loop, and the pipeline resistance distribution shows a significant impact on the injection performance of safety equipment with low driven head such as CMTs. [Conclusions] The unique and important thermal hydraulic phenomena in the early stage of the accident, namely reverse flow and heat transfer process in PRHR HX and natural circulation process between core and SGs, are identified. The asymmetric arrangement effect will be more noticeable when the break occurs in PRHR pipeline.

Key words LOCA, Advanced Core-cooling Mechanism Experiment (ACME) facility, Integral effect test, Natural circulation, Passive safety

非能动余热排出(Passive Residual Heat Removal, PRHR)系统是第三代核电技术的重要设 计创新^[1-2],事故条件下PRHR系统能够以自然循环 流动的方式导出堆芯衰变热,实现反应堆冷却剂系 统(Reactor Coolant System, RCS)降温,保证堆芯冷 却^[3-4]。国内外针对非能动核电厂开展的破口失水 事故(Loss of Coolant Accident, LOCA)试验和分析 均表明, PRHR系统可有效实现 RCS 的降温和 降压^[5-8]。

当PRHR管线发生破口后,非能动余热排出热 交换器的换热降温功能会丧失。随着事故进程的发 展,PRHR换热功能的失效会影响非能动堆芯冷却 系统(Passive Core Cooling System,PXS)各安全设 备的热工水力状态,并进一步通过复杂的相互作用 机制影响RCS的状态,最终影响PXS的事故缓解能 力,并导致新热工水力现象出现。因此,我国核安全 监管机构在国和一号独立试验验证过程中,利用大 型非能动堆芯冷却系统整体试验台架(Advanced Core-cooling Mechanism Experiment,ACME)开展了 PRHR管线LOCA整体效应试验^[9],分析了不同破口 位置对RCS压力、安注流量、堆芯液位等关键参数 的影响规律,确认了PXS在多重失效条件下的安全 性能^[10]。结合其中的PRHR换热器入口管线破口试 验工况和冷管段(Cold Leg,CL)破口试验工况,本文 进一步分析了 PRHR 管线破口时 RCS 和 PXS 关键 自然循环现象的变化特点,重点研究了 PRHR 管线 破口试验特有的热工水力现象,获得了 PRHR 管线 破口对 PXS 和 RCS 的影响规律及其耦合作用机理, 为非能动核电厂相关的软件模型开发、安全分析和 核安全审评提供了参考和支持。

1 ACME台架及试验工况

ACME是以国和一号核电厂为参考原型设计建造的大尺度整体效应热工水力试验装置。该装置采用1/3高度比例、1/5.6径向比例模拟了非能动核电厂的RCS系统和PXS系统。经多次升级改造,ACME装置已先后开展冷管段LOCA、直接安注管线(Direct Vessel Injection,DVI)LOCA、全厂断电(Station Blackout,SBO)等多种类型的整体效应试验^[11-14]。

为分析 PRHR 管线破口对 PXS 事故缓解能力的 影响, PRHR 管线 LOCA 整体效应试验中设置了冷 管段破口工况(LOCA-01),该工况用于复现典型的 SBLOCA 进程^[15],并为 PRHR 管线破口工况提供对 比基准。

试验的初始条件及边界条件如表1所示,其中

LOCA-01 工况的破口发生在 CMT 侧环路的冷管段 (图1);LOCA-02为PRHR 管线双端断裂破口,破口 发生在 PRHR HX入口管线,处于系统较高的位置。 两个工况的破口等效直径均为5 cm,且破口朝向相 同,均为管道底部破口。此外,由于LOCA进程主要 由 RCS 压力决定,试验工况保证了 RCS 的压力初值 基本一致,均为试验台架可运行的最高压力;为确保 试验可以保守地再现非能动核电厂 RCS 系统和 PXS 系统的安全性能,各试验工况中均假设非稳压 器侧的1个第4级自动降压系统(ADS4)失效。图1 和 ACME 台架中的各系统、设备及其他事故的缩写 如表2所示。

参数	数值 Value	
Parameter	冷管段破口	PRHR管线破口
	Break in CL (LOCA-01)	Break in PRHR pipeline (LOCA-02)
衰变功率 Decay heat power / MW	3.34	3.12
稳压器压力Pressurizer pressure / MPa	9.08	9.07
RCS 环路平均温度 RCS average temperature / °C	291.5	291.2
蒸汽发生器二次侧出口压力	6.99	6.98
Pressure of the secondary side of steam generator (SG) / MPa		
SG二次侧液位 Feed water level of SG / m	3.62	3.64
安注箱液位Level of Accumulator (ACC) / m	1 358	1 382
堆芯补水箱水温 Temperature of core makeup tank (CMT) / °C	30.0	33.7
安全壳内置换料水箱水温 Temperature of IRWST / ℃	56.4	54.2
IRWST 液位 Level of IRWST / m	3.55	3.55
等效破口直径Equivalent break diameter / cm	5	5

表1 ACME 台架 LOCA 试验工况初始及边界条件 Table 1 Initial and boundary condition for LOCA tests at ACME facility

2 事故进程分析

LOCA 试验工况中,RCS 的压力如图 2 所示, ADS 开启前的 SG 二次侧压力如图 3 所示。为便于 对比,本文的压力(*p*)、温度(*T*)、流量(*Q*)、功率(*P*) 和液位(*L*)等参数均采用试验初始值或瞬态最大值 进行归一化,并以*标示。试验设备的主要动作时序 如表 3 所示。图 2 的压力曲线和表 3 的事故序列表 明,PRHR LOCA 与 CL LOCA 的事故进程基本相 同,与先进非能动核电厂 SBLOCA 的事故进程一 致^[6.15];与 CL LOCA 相比,PRHR LOCA 中,PRHR HX、ADS 和 IRWST 等安全设备的动作时间明显延 后。这是因为PRHR管线破口会抽吸PRHR系统内的冷却剂,导致PRHR支路发生反向流动,冷却剂在流经PRHRHX时会被冷却,因此该过程RCS的喷放速率略高于冷管段破口(图3)。随着RCS降压并达到饱和,冷却剂急剧闪蒸生成的大量蒸汽会减缓RCS降压并形成短暂的压力回升,CL破口时压力峰值持续时间较短且不稳定,导致出现压力波动;而PRHR管线破口时,因破口位置较高,闪蒸形成的蒸汽会向破口积聚,形成具有一定压力稳定效应的蒸汽空间(汽腔),导致破口喷放以蒸汽为主,RCS的降压速率因此变慢。结合图2,冷却剂饱和后RCS的

图1 ACME装置破口位置示意 Fig.1 Schematic of break location in ACME facility

缩写	中文全称	缩写	中文全称
Abbreviation	Full Chinese name	Abbreviation	Full Chinese name
RX	反应堆压力容器	PRHR HX	非能动余热排出热交换器
	Reactor pressure vessel		Passive residual heat removal heat exchanger
CL	冷管段 Cold leg	PRHR	非能动余热排出 Passive residual heat removal
HL	热管段 Hot leg	LOCA	失水事故 Loss of coolant accident
SG	蒸汽发生器 Steam generator	SBLOCA	小破口失水事故 Small break loss of coolant accident
CMT	堆芯补水箱 Core makeup tank	SBO	全厂断电事故 Station blackout accident
ACC	安注箱 Accumulator	PZR	稳压器 Pressurizer
PBL	压力平衡管线 Pressure balance line	PXS	非能动堆芯冷却系统 Passive core cooling system
DVI	直接安注管线 Direct Vessel Injection	RCS	反应堆冷却剂系统 Reactor coolant system
ADS	自动降压系统	IRWST	安全壳内置换料水箱
	Automatic depressurization system		In containment refueling water storage tank

表 2 ACME 台架系统及设备缩写 Table 2 The abbreviations of systems and equipments in ACME facility

降压速率减慢,CMT的水位下降过程随之变慢,进 而使得ADS、ACC和IRWST等安全设备的投入延 后,最终导致PRHR管线破口事故的时序出现 延后。

因 ACME 台架的运行压力为 9.2 MPa,试验开 始时台架 RCS 的状态已相当于设计原型喷放阶段 的末期,且试验中喷放持续的时间极短,因此可将喷 放阶段末期与自然循环阶段合并分析^[16]。根据图 2 所示 RCS 压力变化特点,可将 ACME 台架 LOCA 试 验分为三个主要阶段^[17],即自然循环阶段、ADS 喷 放阶段和 IRWST 安注阶段。

自然循环阶段,冷段SBLOCA中的主要现象为 堆芯-PRHR HX 自然循环和 CMT 安注^[17]。而在 PRHR管线破口工况中,堆芯-PRHR HX 自然循环现 象消失,主要存在堆芯-SG 自然循环现象和 CMT 安

图2 不同 LOCA 试验工况中的 RCS 降压曲线 Fig.2 RCS depressurization curves of different LOCA test condition

注破口喷放会直接影响堆芯-PRHR HX 自然循环过程,进而导致 RCS 的参数状态发生显著变化,因此本文重点研究自然循环阶段的热工水力现象。

表3 ACME LOCA 试验主要时序 Table 3 Chronology of major events obtained in ACME LOCA test

∃架设备动作 Action of facility equipment 时间 Time / s		
	LOCA-01	LOCA-02
试验开始(S信号),主泵惰转 Test begins (S signal), Reactor pumps coastdown	0	0
破口阀打开 Break valve opens	5	4
SG1、SG2蒸汽关闭 Relief valves of SG1 & SG2 closed	2	5
CMT-1、CMT-2 安注阀开启 Safety injection valves of CMT-1 & CMT-2 open	1	5
PRHR 隔离阀开启 Isolation valve of PRHR pipeline opens	3	10
ADS1A、ADS1B开启 ADS1A and ADS1B open	586	624
ADS2A、ADS2B开启 ADS2A and ADS2B open	650	686
ACC1、ACC2安注阀开启 Safety injection valves of ACC-1 & ACC-2 open	692	750
ADS3A、ADS3B开启 ADS3A and ADS3B open	717/719	755/755
IRWST1、IRWST2安注阀开启 Safety injection valves of IRWST1 & IRWST2 open	1 375	1 399
ADS4-1A 失效, ADS4-2A 开启 ADS4-1A starts failed while ADS4-2A opens	1 374	1 399
ADS4-1B、ADS4-2B开启 ADS4-1B and ADS4-2B open	1 409	1 434
IRWST 安注开始 Safety injection of IRWST begins	1 503/1 506	1 531/1 543

ADS喷放阶段的现象以RCS降压为主,RCS的 压力主要由ADS决定,第1级ADS打开后,一回路 压力迅速下降,此后第2级和第3级ADS相继打开, 实现进一步降压;第4级ADS用于实现RCS的最终 降压。该阶段,PRHR管线破口对降压过程的影响 并不显著。

IRWST 安注阶段, IRWST 内的水在重力作用下

向RCS注入,同时两相混合物经破口和ADS-4流出^[18]。PRHR管线破口的影响同样不显著。

3 自然循环过程现象分析

3.1 RCS 自然循环现象分析

图4分别为试验中RCS内不同环路冷管段流量 的变化情况。破口发生后,主泵发生惰转,各冷管段 流量均出现骤降。与CLLOCA相比,PRHR管线破 口工况中RCS冷管段循环流量均较为稳定,且平均 流量略高。这是因为该工况下RCS环路基本保持 完整,且两列RCS支路与PRHR支路属于平行环路, 当堆芯-PRHRHX自然循环中断后,堆芯衰变热无 法向水温较低的IRWST水箱传递,在堆芯流体与 SGU型管内流体密度差的作用下,堆芯衰变热转而 通过RCS回路以自然循环过程向SG传递。两种工 况下SG瞬态换热功率的对比(图5)表明,PRHR破 口工况中,事故初期PRHR侧SG的换热功率出现显 著增加;CMT侧SG的换热功率也出现增加。

图4 RPRH (a)和CMT (b)侧回路冷管段流量 Fig.4 Flow rate of cold leg in PRHR (a) and CMT (b) side loop

在图5所示时间范围内,PRHR管线破口工况中两台SG的平均功率提高约30%,其中PRHR侧SG的平均功率提高约22%,CMT侧SG的平均功率提高约16%。典型SBLOCA工况中,事故前期的自然循环主要指PRHR自然循环过程^[17,19],这是因为IRWST内的水温远低于蒸汽发生器二次侧的水温,PRHR支路的自然循环能力远超过堆芯-SG间的自然循环能力。但在PRHR管线破口中,堆芯-SG自然循环过程变为事故初期主要的自然循环现象。

图 6 为两种工况下 SG 进口和出口的流体温度。 CL SBLOCA 初期, 受破口喷放和 PRHR 运行的影响, PRHR 侧 SG 的出口温度会出现剧烈振荡。随着 RCS 压力的进一步下降, SG 的进出口闪蒸并排空, 因 SG U 型管内充满蒸汽, 堆芯与 SG 的自然循环过 程中断。直至 IRWST 安注投入, CMT 侧 SG 入口才 会逐渐被安注冷水淹没。PRHR 管线破口工况中,

SG的出口温度变化过程与冷管段破口基本一致,但 由于 PRHR 运行中断, PRHR 侧支路 SG 的出口温度 更为稳定。

对比两种工况下 CMT 侧和 PRHR 侧 SG 的进、

出口的流体温度可知,两列SG的温度变化存在显著 差异。这表明PXS系统中PRHR、CMT的非对称布 置会导致事故瞬态中PRHR侧和CMT侧的RCS支 路出现显著的参数差异,当PRHR管线破口时,两列 RCS支路的参数差异进一步加剧。

图 6 LOCA-01 SG1 (a)、LOCA-02 SG1 (b)、LOCA-01 SG2 (c)和LOCA-02 SG2 (d)进出口温度 Fig.6 Inlet and outlet temperature of SG1 in LOCA-01 (a), SG1 in LOCA-02 (b), SG2 in LOCA-01 (c) and SG2 in LOCA-02 (d)

3.2 PRHR 自然循环现象分析

图 7 为 PRHR C 型管内的液位,图 8 为 PRHR HX 的出口流量。图 7 表明,随着 RCS 内流体持续丧 失,C 型管内的液位下降。CL 破口时,因破口处于 RCS 系统低位,随着 RCS 内流体的饱和闪蒸,C 型管 内会出现蒸汽冷凝过程,因此其液位呈现波动变化; 而 PRHR 管线破口时,C 型管内的液位缓慢下降,在 ADS 启动和 IRWST 注入后,RCS 内水装量回升,C 型管内的液位快速回升。

结合图8可知,C型管内出现了短暂的反向流

动,但随着冷却剂的持续丧失,C型管内的水位最终 会缓慢下降。图8还表明,CL LOCA中PRHR支路 的循环流动虽存在较大波动,但一直持续到ADS启 动;而PRHR管线LOCA中,PRHR支路循环流动持 续的时间很短,PRHR HX内的蒸汽冷凝过程也会随 循环流动的停止而消失,PRHR HX对RCS的降温作 用也会完全丧失。

Fig.8 Outlet flow rate of PRHR

IRWST内C型管束附近不同高度处的水温如 图9所示,图中以与水箱底部的距离表示所测温度 的位置。CL SBLOCA中,导致IRWST水温升高主 要有两个机制:自然循环阶段PRHR HX 附近的对流 换热和 ADS 降压阶段喷洒器附近的直接接触冷凝。 当PRHR管线破口时,除破口初期PRHR HX内冷却 剂闪蒸和倒流形成的短暂传热外,PRHR HX 附近的 对流换热非常微弱,IRWST内的冷热分层消失;在 ADS 降压阶段, PRHR 管线破口中的直接接触冷凝 过程与冷管段破口中的过程基本一致。

图9 IRWST内PRHR HX附近的水温 (a) LOCA-01 工况, (b) LOCA-02 工况 Fig.9 Water temperature near PRHR HX within the IRWST (a) Case LOCA-01, (b) Case LOCA-02

3.3 CMT安注过程分析

非能动电厂 SBLOCA 期间主要的安注过程包 括CMT安注、ACC安注和IRWST安注,这些安注均 通过 DVI 管线向堆芯补水。其中, CMT 经 PBL 与 RCS冷管段相连,其内部压力和水位容易受到同侧 RCS支路的影响,因此本文重点分析破口位置变化 后的CMT安注过程。

LOCA-01、LOCA-02 工况的 CMT 安注流量如 图 10 所示。CMT、ACC、IRWST等安注压力不同, 但在DVI管线的接口位置基本相同,因此当某一安 注过程居于主导地位时,其他安注流动就会受到抑 制。如ACC运行后CMT的安注流量迅速停止(图 10),当ACC驱动压力降低,流量减小时,CMT流量 还会再次升高。对比不同工况下的CMT安注流量 可知,冷段破口时PRHR支路冷却能力强,在RPV进 出口间形成的驱动力更大,CMT的安注流量因此更 大,且由于CMT经压力平衡管线与冷管段相连,破 口流动形成的压力脉动会直接影响CMT流量,导致 其出现显著的波动。此外,试验装置的设计建安难 以实现两列CMT安注管线的阻力完全相同,阻力的 差异会导致相同工况下两列CMT的安注流量出现 明显差异。

不同破口位置工况中CMT内部的水位变化如 图 11 所示。LOCA 事故中, ACC 和 IRWST 投入, 会 导致 RPV 局部压力上升,进而使得经 PBL 回流至 CMT的流量增加,导致CMT液位出现短暂回升。 两列 CMT 安注管线间的阻力差异, 会使得一侧 CMT 液位升高幅度更为明显。在 PRHR 管线破口 工况中,CMT侧的冷管段保持完整,两列CMT的液 位回升现象的差异更为显著。

3.4 堆芯液位分析

LOCA事故过程中堆芯区域混合液位的变化过 程如图12所示。对比可知,破口位置从冷管段变为 PRHR 管线,自然循环阶段中,PRHR HX 的降温降 压功能丧失,SG的降温降压能力提高,堆芯混合液 位的下降先慢后快; ADS 喷放阶段, RCS 顶部的汽 腔效应使得堆芯水位较为平稳,未出现明显波动;

IRWST 安注阶段,两工况液位基本相同。事故期间 出现的最低液位表明,PRHR 管线破口工况的堆芯 最低液位略低,但堆芯仍处于淹没状态。

图 12 堆芯区域混合液位 Fig.12 Mixing liquid level within the core region

4 结语

结合ACME台架破口失水整体效应试验,本文分析了PRHR管线破口对安全设备动作序列和事故进程的影响,重点研究了事故初期自然循环阶段的热工水力现象,获得了破口位置对PXS与RCS相互作用的影响规律,主要结论如下:

1)与冷管段 SBLOCA 相比, PRHR 管线破口失 水后, PRHR HX 会出现反向流动换热的新现象;经 RCS 环路的堆芯-蒸汽发生器间自然循环过程平均 载热功率提高约 30%, 对 RCS 降温降压具有重要作 用, 是事故初期的关键现象。

2)PXS 系统中 PRHR 和 CMT 的非对称布置导 致不同 RCS 支路的热工水力状态存在显著差异; PRHR 管线破口后,非对称布置的影响增强。

作者贡献声明 刘宇生负责试验工况及边界条件设计,开展试验,起草撰写文章;谭思超负责提出文章 整体思路,全文审阅修改和整体把握;靖剑平负责试 验数据分析;庄少欣负责试验结果分析与现象识别; 李东阳负责破口失水事故现象分析及研究;王楠负 责开展试验,试验数据分析。

参考文献

- Zheng M G, Yan J Q, Jun S T, *et al.* The general design and technology innovations of CAP1400[J]. Engineering, 2016, 2(1): 97 - 102. DOI: 10.1016/J.ENG.2016.01.018.
- Schulz T L. Westinghouse AP1000 advanced passive plant
 [J]. Nuclear Engineering and Design, 2006, 236(14 16):
 1547 1557. DOI: 10.1016/j.nucengdes.2006.03.049.

3 袁添鸿,于雷,王川. 全厂断电事故下AP1000 非能动余 热排出系统分析[J]. 原子能科学技术, 2010, 44(S1): 248 - 252.

YUAN Tianhong, YU Lei, WANG Chuan. Research on passive residual heat remove system under loss of power
[J]. Atomic Energy Science and Technology, 2010,
44(S1): 248 - 252.

- Zou J, Li Q, Tong L L, *et al.* Assessment of passive residual heat removal system cooling capacity[J]. Progress in Nuclear Energy, 2014, 70: 159 166. DOI: 10.1016/j.pnucene.2013.09.011.
- 5 Yonomoto T, Kukita Y, Schultz R R. Heat transfer analysis of the passive residual heat removal system in ROSA/AP600 experiments[J]. Nuclear Technology, 1998, 124(1): 18 - 30. DOI: 10.13182/nt98-a2906.
- Wright R F. Simulated AP1000 response to design basis small-break LOCA events in APEX-1000 test facility[J]. Nuclear Engineering and Technology, 2007, 39(4): 287 298. DOI: 10.5516/NET.2007.39.4.287.
- Wang W W, Su G H, Tian W X, et al. Research on thermal hydraulic behavior of small-break LOCAs in AP1000[J]. Nuclear Engineering and Design, 2013, 263: 380 - 394. DOI: 10.1016/j.nucengdes.2013.06.004.
- 8 Ge J, Tian W X, Qiu S Z, *et al.* CFD investigation on thermal hydraulics of the passive residual heat removal heat exchanger (PRHR HX)[J]. Nuclear Engineering and Design, 2018, **327**: 139 - 149. DOI: 10.1016/j. nucengdes.2017.11.029.

9 郝博涛, 王楠, 钟佳, 等. PRHRS隔离阀前后破口事故对 非能动堆芯冷却系统的影响分析[J]. 原子能科学技术, 2020, 54(11): 2073 - 2080.
HAO Botao, WANG Nan, ZHONG Jia, *et al.* Analysis of effect of SBLOCA before and behind isolation valve of PRHRS on passive reactor core cooling system[J].
Atomic Energy Science and Technology, 2020, 54(11): 2073 - 2080.

- 10 刘宇生, 许超, 吴鹏, 等. ACME 台架 PRHR 管线破口位 置敏感性试验研究[J]. 核动力工程, 2021, 42(5): 64 - 70. LIU Yusheng, XU Chao, WU Peng, et al. Experimental Study on sensitivity of PRHR pipeline break location on ACME test facility[J]. Nuclear Power Engineering, 2021, 42(5): 64 - 70.
- Li Y Q, Chang H J, Ye Z S, *et al.* Analyses of ACME integral test results on CAP1400 small-break loss-ofcoolant-accident transient[J]. Progress in Nuclear Energy, 2016, 88: 375 - 397. DOI: 10.1016/j. pnucene. 2016.

01.012.

- 12 房芳芳,杨福明,郝博涛,等.ACME试验台架典型小破 口工况试验及数值分析[J].原子能科学技术,2017,51 (8):1393 - 1399. DOI: 10.7538/yzk.2017.51.08.1393.
 FANG Fangfang, YANG Fuming, HAO Botao, *et al.* Experimental and numerical analyses of typical SBLOCAs on advanced core-cooling mechanism experiment[J]. Atomic Energy Science and Technology, 2017, 51(8): 1393 - 1399. DOI: 10.7538/yzk.2017.51.08. 1393.
- 13 刘宇生,许超,房芳芳,等. ACME台架全厂断电事故试验研究[J]. 原子能科学技术, 2018, 52(8): 1438 1444. LIU Yusheng, XU Chao, FANG Fangfang, et al. Test study of station blackout accident on advanced corecooling mechanism experiment facility[J]. Atomic Energy Science and Technology, 2018, 52(8): 1438 - 1444.
- 14 史国宝,徐财红,严锦泉,等.CAP1400非能动堆芯冷却 整体试验关键现象分析[J].原子能科学技术,2021,55 (10):1806-1813.

SHI Guobao, XU Caihong, YAN Jinquan, *et al.* Analysis on key phenomena of CAP1400 passive core cooling integral testing[J]. Atomic Energy Science and Technology, 2021, **55**(10): 1806 – 1813.

- Yang J, Wang W W, Qiu S Z, et al. Simulation and analysis on 10-in. cold leg small break LOCA for AP1000 [J]. Annals of Nuclear Energy, 2012, 46: 81 - 89. DOI: 10.1016/j.anucene.2012.03.007.
- 16 卢霞, 匡波, 孔浩铮, 等. SBLOCA 整体试验台架的比例 模化分析与初步评估[J]. 应用科技, 2019, 46(5): 80 -87. DOI: 10.11991/yykj.201812002.
 LU Xia, KUANG Bo, KONG Haozheng, *et al.* Scaling analysis and preliminary evaluation of integral effect test facility for SBLOCA[J]. Applied Science and Technology, 2019, 46(5): 80 - 87. DOI: 10.11991/yykj.201812002.
- Wang W W, Su G H, Qiu S Z, *et al.* Thermal hydraulic phenomena related to small break LOCAs in AP1000[J].
 Progress in Nuclear Energy, 2011, 53(4): 407 419. DOI: 10.1016/j.pnucene.2011.02.007.
- 18 Bessette D E, di Marzo M. Transition from depressurization to long term cooling in AP600 scaled integral test facilities[J]. Nuclear Engineering and Design, 1999, 188(3): 331 - 344. DOI: 10.1016/S0029-5493(99) 00024-2.
- Westinghouse Electric Company LLC. AP1000 PIRT and scaling assessment (non-proprietary) [R]. 15230-0355. Pittsburgh, PA, 2001.